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ABSTRACT

A fast Fourier transform program has been developed and run on a
simulation of the Burroughs D-Machine processor. This program was devel-
oped to gain insight into the use of microprogrammed structures for signal
processing applications and to serve as a reference "benchmark" during the
development, evaluation, and application of programmable signal processors
at the Naval Research Laboratory.

The D-Machine simulator and a companion translator program have
been written in Fortran to run on the Control Data Corporation's Kronos
time-sharing system. This action was taken because of a paucity of soft-
ware support for the D-Machine itself and because the simulator provides
debugging features not found in hardware. The time-sharing terminal was
also more accessible.

A novel feature of the FFT program is its ability to terminate calcula-
tions before log2N stages have been completed (N is the number of complex
input data points), thereby providing multiple estimates of less than N
spectral lines, rather than one estimate of each of N lines, as is the case
when log2N stages are carried to completion. Several of the test spectra
which have been calculated are described in Section 3 of the report. For
reasons of scarcity of registers and lack of concurrency, the D-Machine is
deemed poorly suited to signal processing applications.

PROBLEM STATUS

This is an interim report; work is continuing on the Problem.

AUTHORIZATION

NRL Problem B02-10
Project No. XF-21-241-015-K152

Manuscript submitted August 30, 1972.
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GLOSSARY

Al, A2, A3

ABT

AMPCR

A(n)

AOV

BMAR

BR1, BR2

B register

Butterfly

CAJ

COV

CTR

CU

EXTOP

FFT

i

I

k

LCl, LC2

LIT

LMAR

LSB

LU

LUOP

M

MAR

MCU

MDOP

primary input registers for the adder

all bits true (i.e. equal to ones)

alternate microprogram count register

complex spectral line, output of the program

adder overflow

concatenation of BRi or BR2 and MAR

base register 1, base register- 2

primary interface from main memory

the computational kernel which combines two complex input points with
a complex weighting factor to yield two complex output points

condition adjust

counter overflow

counter

control unit

external operations

fast Fourier Transform

V/=r
index of entries in sine table; imaginary part

index of input data samples

stage number, exponent in angle denominator

local condition flags 1 and 2

literal register

an instruction; load literal register into MAR

least significant bit

logic unit

logic unit operations

number of FFT stages to be completed

memory address register

memory control unit

memory or device operations
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MIR memory information register

MPAD microprogram address

MPM microprogram memory

MSB most significant bit

n index of output spectral lines

N number of complex input samples

P2R address of real part of the second (lower) point in a butterfly. See Fig. 1-5.

R factor in angle numerator; real part

RDC read complete (flag bit)

RMI ready MIR (flag bit)

SAR shift amount register

S-memory main memory (containing data)

Translang a D-Machine symbolic programming language

X(j) complex input data sample, input to the program
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A FAST FOURIER TRANSFORM MICROCODE FOR
THE BURROUGHS D-MACHINE

1. INTRODUCTION

1.1 Objectives and Conclusions

NRL is developing a high-performance, microprogrammable Signal Processing Element
(SPE) (1-4). Early in the development cycle, it was decided to microprogram a Fast
Fourier Transform (FFT) code for an existing microprogrammable machine. The Burroughs
D-Machine is a recently developed microprogrammable processor (5). A unit with a 32-bit
word length is available at the Naval Research Laboratory (NRL).

The D-Machine cannot be classified as a high-performance signal processor because of
its lack of a multiplier and sufficient high-speed registers, but it was believed that program-
ming the D-Machine would expose the issues of bookkeeping and address calculation that
must be faced in the design of an efficient signal processor but which are often obscured
in general purpose machines and languages.

The D-Machine may be programmed in a symbolic language, called Translang, for
which Burroughs provides a translator program that runs on their B5500 computer. Since
a B5500 was not readily available for this effort, and the software support for the D-Machine
hardware was nil, programs were written in Fortran to perform the translation function and
to simulate the hardware on the Kronos time-sharing system. With the aid of these
support programs, the FFT program was written and debugged with an emphasis on maximiz-
ing computational speed consistent with a reasonable program size. The result is the program
listed in Appendix A, comprising 766 instructions. This is many times more than the bare
minimum needed to perform an FFT calculation, for several reasons which are described
in Section 2.

The configuration of the D-Machine, illustrated in Figs. 1-1 and 1-2, differs greatly
from the general configuration recommended for high-speed signal processors (6-9). It
does not take advantage of the highly structured nature of the FFT operation; instead,
it performs all operations serially using a single arithmetic/logic unit. The program reflects
this, being organized to minimize the number of memory accesses required.

The test results, which are described in Section 3, indicate the large numbers of clock
cycles expended in each of the program tasks, and these are for relatively small sample
sizes. The rapid growth of processing time as a function of sample size, as indicated in
Table 1-1, made sample sizes in excess of 128 prohibitively expensive for testing.

The deficiencies of the D-Machine as a signal processor, discussed in Section 4, have
been noted in the design of the NRL SPE. The Microprogrammed Control Unit (MCU)
of the SPE (3,4) has been designed with a sufficient number of suitable registers to permit

1



H. H. SMITH

I.-

I co ZI

I D -J c u o I

2

z .-
CC -

z
u^"O

D) >
a. uJ 7,Fz

o <.4 .4

0I 
00l4n 

I.-w

Ocit2

0

s

(m

0

0

-4

a)

-

a:

us

4

-

uJ

I,
A:~~~~

Xc].



NRL REPORT 74943

- - I-~~~~

z
ZC) 

cr~~- 0~c -J
LL4~~~~< Id 4c

In U J 

I-w ~~ m I

~~~Il cn4~ 0ciZ 
0 0 0 *-0 2 .j

z
0~~~~~

J z DUJC
LU 0

Cd)

zj 0 -j J -j

0

-- 4 ~ ~ ~ ~~~~~~~~-

Z cc -

N -
cc 0~ 

LU a

w0

co
I-~~~~~~~~~~C



H. H. SMITH

Table 1-1
Processing Time, in Clock Cycles, vs Sample Size

(1) (2) (3) (4) (5) (6) (1+4
Input InQ2 alze Sine Data Bit Special General +4

Table Transfer Reversal Butterflies Butterflies

16 points
SAW 116 54 1339 548 582 3040 2522 6198

32 points
SAW 132 59 3111 1092 1211 5953 11339 18562
REC 132 59 3111 1211 5957 11391 18618
P 2432 59 3111 1211 5956 11381 18607
CS 325 59 3111 1211 5953 11326 18549
CS 324 59 3111 582 5056 3945 9642
SIN 325 59 3111 1211 5947 11184 18401
SIN 324 59 3111 582 5052 3852 9545

64 points
SAW 164 64 6656 2180 2480 11798 35622 49964

128 points
SAW 1128 69 13774 4356 5029 23091 96811 125000

much higher concurrency with an only slightly wider control word, and the Signal Process-
ing Arithmetic Unit (SPAU) will be designed with high-speed parallel arithmetic and con-
current address generation.

1.2 The D-Machine

1.2.1 Configuration

Burroughs (5,9) describes the D-Machine as a family of digital processors utilizing
a modular building block architecture. The major subunits are the Microprogram Memory
(MPM), the Nano Memory, the Memory Control Unit (MCU), the Control Unit (CU), and
the Logic Unit (LU), all of which are shown in Fig. 1-1. The LU is composed of individual
sections, each eight bits wide, up to a maximum of eight sections. The simulated LU is
32 bits wide. The FFT control program resides in the MPM in the form of 16-bit "instruc-
tions." Most of these are actually pointers to generic 54-bit instructions known as Type I
instructions, stored in the Nano Memory. The remainder of the MPM instructions, known
as Type II instructions, are used to load the value of an arbitrary constant, contained in
the instruction, into the literal register (LIT), the shift amount register (SAR), or the
alternate microprogram control register (AMPCR). Data and parameters are stored in the
S memory which is controlled by the MCU.

The contents of S memory are addressed in two parts; the most significant eight bits
are in a base register (BRI or BR2) and the least significant eight bits are in the memory
address register (MAR). Words are read from S memory into the LU adder via a B register,
and are written into S memory from the LU barrel switch via a Memory Information
Register (MIR). The barrel switch permits the contents of the adder to be shifted left or

4
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right, end off, or right circular by a number of bits equal to the contents of the SAR.
The LU also contains three general purpose registers denoted by Al, A2, and A3. The
MCU contains a counter (CTR) having a maximum count of 255.

The A registers, LIT and CTR, may be used as the X input to the adder, and the
B register, LIT, CTR, AMPCR or the concatenated base register and MAR (BMAR), may
be used as the Y input. For this purpose, the B register is separable into three parts:
the most significant bit (MSB), the least significant bit (LSB), and the 30 central bits.
These can be specified as either zero, one, their true value, or the complement of their
true value, by means of a three-part subscript on B. For example, BOIT requires that bit
number one of B shall be zero, bits two through 31 shall all be ones, and bit 32 shall
have its current value, whether zero or one, when B is used as the Y input to the adder.

Overflows in the adder (AOV) and the counter (COV) are indicated indefinitely.
The dynamic states of MST and LST are indicated for one clock pulse following each
adder operation. An "all bits true" (ABT) condition is also indicated dynamically. Success-
ful completion of a Read operation is indicated by setting a read complete (RDC) bit to
one. Completion of a Write operation is marked by setting a ready MIR (RMI) bit. The
simulator arbitrarily requires two clock cycles to elapse before setting RDC and RMI. Two
local-condition flags (LC1 and LC2) are also available to the programmer. All of these
flags can be used as the basis for making conditional branches in the program and for
performing LU operations conditionally.

The method of employment of the D-Machine hardware in executing the FFT program
is shown in the detailed flowcharts of Section 2 (and in the comments in the program
listing). Each memory access is called out and the juggling of data in the working registers
is shown.

1.2.2 Programming

Type I instructions normally require two clock cycles to be executed. The sequence
of operations in these two phases is illustrated in Table 1-2. When Type I instructions
occur in sequence, Phase 2 of each instruction is executed concurrently with Phase 1 of its
successor. Type II instructions require only a single clock cycle and cause the Phase 2
operations of the concurrent Phase 1 instruction to be repeated during the following clock
cycle. A succession of Type II instructions will cause the Phase 2 of the last preceding
Type I instruction to be repeated indefinitely.

Since the contents of destinations are not changed until the end of Phase 2, it is
possible to execute an LU operation before the registers involved have changed as a result
of the preceding operation. For example, when using LIT to load MAR (or CTR, or any
of the other registers), the instruction to load LIT should follow the loading of MAR
rather than precede it. Thus, the sequence

1 = LIT
LMAR
2 = LIT

5
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Table 1-2
Instruction Timing*

Phase 1

1. Obtain microinstruction address (MPAD) from either MPCR
or AMPCR.

2. Select address increment: 0, 1, or 2.
3. Read the addressed microinstruction.
4. Decode the microinstruction for either Type I or Type II.

For a Type II:

5a. Use the low-order part as a literal.
Ila. Step successor to MPAD.
llb. Clock literal(s) to SAR and/or LIT; AMPCR.

For a Type I:

5b. Use the low-order part as a- nanoinstruction address.
7. Decode the nanoinstruction.
8. Select the condition to test.
1Oa. Test Logic Unit Operations, LUOP.
l0b. Test External Operations, EXTOP.
llc. If EXTOP is true, enable CAJ/MDOP.
ld. If LUOP is true, complete destination part of Phase 2 of prior LUOP; also,

decode and load command register.
Ile. True/False successor to MPAD.
11f. Reset tested conditions.

Phase 2

la. Select-adder X input.
lb. Select adder Y input.
3a. Inhibit carry.
3b. Select and do adder operation.
7. Adder dynamic conditions (ABT, AOV, LST, MST) available for testing in

Phase 1 of subsequent instruction.
9. Select shift direction and do shift.
11g. When LUOP condition is true, change destinations.

*The number preceding each item indicates its relative time of occurrence.

results in the MAR being loaded with the number 2.- For this reason, instructions which
load the SAR, LIT, or AMPCR should follow the instruction which uses them in a logic
unit operation.

In addition to logic unit operations (LUOP), the 54-bit microinstruction recognizes
memory/device operations (MDOP) and a condition adjust (CAJ). One of each of these
may occur in the same instruction and the LUOP or MDOP/CAJ may be conditional while
the other is unconditional. The instruction specifies the source of its successor instruction

6
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for both true and false conditions. A four-bit field is used to specify the source of input
to the B register. One such source is the MIR which can therefore serve as a convenient
temporary store whose contents are readily moved into the B register for adder operations.

Memory access operations require that the desired address first be stored in BMAR,
the concatenated base and memory address registers. This may be done by loading a
literal or by incrementing. The MIR may be loaded for write operations while BMAR is
being set up. LUOP's which do not change BMAR or the MIR (in the case of memory
writing) may then be performed concurrently with the access. The access is completed
when an RDC or RMI flag is set.

1.3 The FFT Program

The test program calculates a discrete Fourier transform according to Eq. (1-1) for
data samples which are powers of two from 3 through 11.

.. ? 0 :.N-1

A(n) = h X(j) exp (-2rijn/N). (l-l)
! ! j=O 

The total number-,of complex data samples X(j)- is N. The program permits premature
termination at the end of any stage M(3 6 M 6 log2 N) in order to provide multiple
estimates of the spectral lines A(n). The four stages-of a 16-point transform are illustrated
in Fig. 1-3. The input data are located in an arbitrary section of memory whose first
(lowest) address-is a parameter of the program, and the output results are left in another
arbitrary section of memory whose first address is a program parameter. When these
addresses are equal, the maximum allowable value of N is 2048, a constraint imposed by
the simulated 8192 locations of S memory.

Prior to executing the program, it is necessary to load S-memory locations 7936
through 7939 with the four parameters N, M, the Data- Address, and the Results Address.
A complete list of all parameters- both input and calculated, is given in Table 1-3.
Calculations are in 16-bit, fixed-point format, although the. simulated D-Machine has a
32-bit word length. The program contains no provision for arithmetic overflow, packing
strictly real input data, or calculating inverse transforms.- These topics are discussed in
Section 2.10. Also, no window weighting was applied to the data or the output lines.
Figure 1-4 is a functional flowchart which shows the major tasks in association with their
program labels as they appear in the listing of Appendix A. The first two tasks, the
generation of a table of trigonometric sines and the generation of a table of binary bit-
reversed numbers, are included in the program for the sake of completeness. In a real-time
processor operating on a continuous stream of input data, these functions would be done
only once, at system startup, or not at all, by using prestored values. The FFT program
described here is organized on a batch processing basis.

In executing the program, the complex points are processed in pairs, as shown in
the "butterfly" diagram of Fig. 1-5, which depicts the complex multiplications of Eq. (1-1).
The output pair resulting from each butterfly is stored in the locations from which the
input pair to that butterfly were obtained. To reduce the number of memory accesses
required, all of the butterflies that involve a particular value of angle exponent, from the

7
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Table 1-3
Program Parameters

Decimal Address {Parameter

7936 Number of sample points, N
7937 Number of stages to complete, M
7938 Data Address
7939 Results Address
7940 lg 2N
7941 Sine table index, I
7942 Cosine of current angle
7943 Sine of current angle
7944 Angle denominator factor, K
7945 Angle numerator factor, R
7946 Unused
7947 Point spacing
7948 Address of P2R
7949 Old P1R value, x 2

7950 2M
7951 P2R sin 0
7952 Angle element, N/4
7953 Return address

first stage through the Mth stage, are calculated at one time in a single group (10). Then
the angle value is advanced, new values of the sine and cosine are obtained, and all butter-
flies involving that angle are calculated through the Mth stage.

Separate coding is used for angles of 0 degrees, 90 degrees, and 45/135 degrees, to
avoid the use of the 16-bit multiplication subroutine. This grouping of the butterflies
has resulted in a nearly twofold increase in the number of instructions devoted to this
function; 502 lines of code for the four butterfly routines, as compared to 262 lines for
the general butterfly alone. Table 1-4 shows the number of lines of code used by each
of the major functions in the program.

Data may be entered into the simulated S memory either directly from a data terminal
keyboard, or from an existing data file. The program listing in Appendix A contains two
instructions, at MPM locations 30 and 31, whose effect is to bypass the sine table genera-
tion by the program so that the sine table may be loaded from a data file. This procedure
saves many clock cycles (and time-sharing service charges). If these two instructions are
deleted, the reassembled FFT program will calculate and store the needed table of sine
coefficients as described in detail in Section 2.1. The bit-reversal table generation was not
bypassed in a similar manner because its size varies with the value of M and in various
test runs M was varied for a fixed set of input data. The simulator can load the S memory
from only one data file, which was reserved for the input data and sine table.

9
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I AB FFT

SI NTAB

MOVDAT

COPY N COMPLEX
POINTS FROM DATA
ADDRESS AREA TO
RESULTS ADDRESS
AREA

DATA 
ADDRESS= NO 

R ESU LTS I
ADDRESS

YES

R EVPTS 

CALCULATE ALL FFT
BUTTERFLIES
INVOLVING AN ANGLE
OF ZERO DEGREES

NINDEGT

CALCULATE ALL FFT
BUTTERFLI ES
INVOLVING AN ANGLE
OF 90 DEGREES

tiR, I _ ,

CALCULATE
. . .IBUTTERFLIES FOR ALL

OTHER ANGLES.
WHICH ARE MULTIPLES

OF 360/N -

Fig. 1-4 - Functional flowchart

10

STORE (N/4)-1
16-BIT SINE VALUES
STARTING AT 256

BITREV I

STORE 2 M BINARY-
BIT-REVERSED
NUMBERS START-
ING AT 512

USE BIT-REVERSED
TABLE TO RE-ORDER
DATA PAIRS IN RE-
SULTS ADDRESS AREA

CALCULATE ALL FFT
BUTTERFLIES INVOLV-,
ING ANGLES OF 45
AND 135 DEGREES

ZERDEd +
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PI = (PR+ 1PII)

P2= (P2R + iP2 0)

NEW Pi=

p Pl+WKP 2

NEW P2 =

lp I-WKP 2 : 

exp (27 i/N)

WKA/\ (cos e,-i sine)

PIR PIR + (P2R cose+ P2 I sine)

P11 -a--P11 + (P2 I COS P2 R Sinl&)

P2R--RIR - (P2R cos+P 2IsinG)

P2 I a PII - (P2r cos - P2R sine)

Fig. 1-5 - FFT butterfly
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Table 1-4
Coding Allocation

Function f Program Label Lines of Code

Initialization FFT 13
Sine Table SINTAB 105
Real Multiply MUPY 27
Bit Reversal BITREV 88
Data Transfer AROUND 31
Zero-degree butterfly ZERDEG 62
90-degree butterfly NINDEG 67
45/135-butterfly FRTYFV 111
General butterfly GNRL 1 262

766

2. PROGRAM DETAILS

2.1 Initialization and Sine Table Generation

Figure 2-1 outlines the procedures for initialization and sine table generation. The
two base registers BR1 and BR2 are assigned to data and parameters, respectively. The
term data includes the table of sines, table of bit-reversed integers, input data, and output
results. The parameters include the items listed in Table 1-3 of which the first four must
be input at run time. The program begins by loading BR2 with its permanent value,
31 (= IF hexadecimal). The first parameter N is thus located at address F00 hexadecimal,
or 7936 decimal.

It is required that N be a power of two. Its logarithm is determined by scanning
from the least significant bit (LSB) to the most significant bit (MSB) for the first nonzero
bit. The counter is loaded initially with 243 and incremented each time a zero bit is
detected. Because the D-Machine test of the LSB is based on the unshifted output of the
adder, it is necessary to subtract 244 from the accumulated count in order to yield log2N.

One quadrant of the complex plane corresponds to N/4 data points so that only
(N/4)-1 sine values need to be stored when the end values of zero and unity are executed
directly. The first entry in the sine table is located at address 256. The values are cal-
culated from the following approximation (11):

sin X = C1X + C3X 3 + C5X 5

C1 = 1.5706268

C3 = - 0.6432292

C5 = 0.0727102

(2-1)

(2-2)

(2-3)

(2-4)

- 1 < X 1.

12

(2-5)
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Values calculated from this formula are compared with the correct values in Table 2-1.
In the stored sine table, the binary point is located between the 18th and 19th bits from
the left in each 32-bit word. The working registers Al, A2, A3, B, and MIR cannot be
spared for temporary storage so the following quantities are saved in external S memory
and recalled as needed: the basic angle element (=4/N), the total angle, the intermediate
result X2 , the return address during subroutine calls, and the table index I. If the maximum
values of N were limited to 1024 (rather than 2048), it would be possible to hold I in
the counter instead of in the S memory.

Table 2-1
Calculated Sine Values

Angle, Decimal Sine Scaled Sine Calculated Sine
degrees

5.625 0.0980 1605 1605
11.25 0.1951 3196 3196
16.875 0.2902 4758 4755
22.5 0.3827 6271 6269
28.125 0.4714 7723 7723
33.75 0.5556 9103 9103
39.375 0.6343 10392 10394
45.0 0.7071 11586 11586
50.625 0.7730 12664 12666
56.25 0.8315 13623 13623
61.875 0.8819 14449 14450
67.5 0.9239 15137 15136
73.125 0.9569 15677 15678
78.75 0.9808 16069 16067
84.375 0.9952 16305 16305

2.2 Bit Reversal

In the in-place algorithm used in this program, the input data are permuted according
to a binary bit-reversed sequence before the FFT butterflies begin. This is accomplished
by first generating a table of bit-reversed integers, using a counting process whose logic is
illustrated in Fig. 2-2 (12). The exact sequence depends on the size of the table, which
contains 2M entries. The first integer produced by the counter is always zero. Each
integer thereafter is produced by examining the preceding integer for the first occurrence
of a zero in its binary representation, starting at the MSB and scanning toward the LSB.
When the first zero is detected at position J (J varies from one to M), an amount equal
to 2 M12 J is added to the preceding entry, and similar amounts for lesser values of J down
to and including one are subtracted. The effect is to convert the first zero to a one and
all of the ones in the more significant bits to zeros.

Figure 2-3 illustrates the program flow, in which the scanning process employs a
mask with initial value 2M/2 , which is repeatedly divided by two until the first zero is
found. The value of J is indicated by the counter. The last entry in the table is equal
to 2M - 1; the first entry, zero, is at S-memory location 512. When the table is complete,

15
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Fig. 2-2 - Bit-reversed counting
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the Data Address and Results Address are tested for equality to determine if it is necessary
to move the data to a new area of memory before permuting the points.

2.3 Data Transfer

If the input Data Address parameter is unequal to the output Results Address parameter,
the program copies the input data into the results area before performing the bit-reversal
permutations (see Fig. 2-4). The real and imaginary components of each point are stored
pairwise, in consecutive locations, with the real component at the lower address. Thus,
2N 32-bit words are copied from the continuous S-memory area whose lowest address is
given by the contents of location 7938 to the continuous area whose lowest address is
given by the contents of location 7939.

To provide multiple estimates when M is less than log2N, the points are permuted
in sections of size 2 M, a total of N12M times. The counter keeps track of the number of
sections processed. Each time a complete section is permuted the Section Start address
is increased by 2 2 M, since there are two data words per point. An index scans the
points within a section. If the index is less than the corresponding (indexed) integer in
the bit-reversal table, then the data word pair that corresponds to the value of the index
is swapped with the data word pair that corresponds to the integer, used as an index.
In the scanning process, if the index is equal to the integer no swap is required and if it
exceeds the integer then the swap has already taken place. When the final section has
been permuted the counter increment results in an overflow and the program branches
to the butterfly calculations.

2.4 Zero-Degree Butterfly

Examination of Fig. 1-3 shows that the spacing in memory between the points in any
butterfly pair doubles in each successive stage and the separation between the pairs that
involve the same angle also doubles. In the zero-degree angle group the address of the
real component of the first point of the first butterfly of any stage is a constant, equal
to the Results Address. The first stage consists entirely of zero-degree butterflies (Fig. 2-5),
N/2 in number; the second stage consists of N/4 such butterflies, and so forth, until the
log2N stage consists of only one butterfly involving each angle.

Memory addressing for the input pairs is keyed on the real component of point 2,
denoted by P2R. The spacing has an initial value of two (memory locations) and the
P2R address is initialized to the Results Address minus the spacing value. The routine
labeled B1BK generates the address pairs by adding the spacing to previous values, and
as long as the P2R address does not exceed the Results Address plus 2N-1, the butterfly
calculation is performed. When it does exceed this value, the spacing is doubled and
immediately tested to determine if the Mth stage has been passed. If not, the zero-degree
butterflies are continued with the new spacing; if so, the program branches to the 90-degree
calculations.

The equations of the general butterfly are

P1, 2R = P1R + (P2R cos 0 + P2 I sin 0)
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Fig. 2-4 - Data transfer
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Fig. 2-5 - Zero-degree butterfly
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PI, 21 P1 1 ± (P2 I COS 0 -P2R sin 0), (2-7)

where the subscripts R and I denote the real and imaginary components, respectively, and
the upper plus sign applies to point 1 and the lower minus sign applies to point 2. The
angle exponent of Eq. (1-1) is denoted by 0. For the zero-degree butterfly these simplify
to

P1, 2R P1R -P 2R (2-8)

PI, 2I P1I ± P2 I, (2-9)

and for the 90-degree butterfly to

PI, 2R P1R ± P2 I (2-10)

1, 21 P1I ± (P2R)- (2-11)

When 0 = 45 degrees, the following equations are solved,

PI, 2R P1R ± 0.707 (P2R + P2 I) (2-12)

P1, 2I P1 ± 0-707 (P2 I - P2R)5 (2-13)

and when 0 = 135 degrees, the butterfly solution is

PI, 2R P1R ± 0.707 (21-P2R) (2-14)

PI, 2I P1 I ± 0.707 (-P2R -P 2 I)- (2-15)

2.5 Ninety-Degree Butterfly

The calculation of the 90-degree butterflies (Fig. 2-6) differs from those of zero
degrees in only three respects. The initial spacing is four, rather than two, because these
butterflies first occur in the second stage. The initial offset of the first butterfly in any
stage is equal to the Results Address minus one-half of the spacing for that stage. Also,
the butterfly formulas reflect an interchange of signs and real and imaginary components
because of the changed values of the trigonometric functions.

2.6 45/135-Degree Butterfly

The routine 45/135-degree butterfly is entered with the LC1 flag in a reset condition,
indicating an angle of 45 degrees. In this case, the initial memory address offset is -3/4
times the spacing and the sine and cosine are both positive. After completing the 45-degree
calculations through the Mth stage, the flag is set, an initial offset of -1/4 times the spac-
ing is used, and the sine is positive but the cosine is negative in the butterfly formulas.
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Fig. 2-6 - Ninety-degree butterfly
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2.7 General Butterfly

The general butterfly (Fig. 2-8) involves angles which are odd multiples of submultiples
of 45 degrees. Its first occurrence is in the fourth stage of the FFT calculations, involving
multiples of 22.5 degrees. If the initial stage number is denoted by K, then the general
angles for that stage are equal to (2R + 1)2ir/2K, for values of R ranging from 0 through
2K- 2 - 1. All of the butterflies for a given angle are calculated in a single group which
generally spans several stages. When the Mth stage is reached, the angle is incremented
by increasing R by one. If the resultant angle is less than r/2, the calculations are resumed
at the Kth stage. If the angle exceeds r/2, then R is reset to zero and K is increased by
one. The value of K is held constant, corresponding to the stage number at which an
angle first appeared, while the spacing, which is a direct measure of the "stage" of a
butterfly, is increased. When K exceeds M, the FFT is complete.

As part of the evaluation of each general butterfly a complex multiplication is per-
formed, as shown in Fig. 2-9. This operation is carried out by performing three real
multiplications and five additions, based on the following expansion:

(R + iI) (cosO -isin0) = (R +I) (cosO + sin0) -IcosO

-R sinO + i (IcosO -R sinO). (2-16)

The three multiplications form the terms R sin 0, I cos 0, and (R + I) (cos 0 + sin 0), in
that order. Because of a shortage of working registers, the R sin 0 term is held in temporary
storage in the S memory during this routine. And, because of a lack of sign extension on
right shifts, it is necessary to test the MSB's of the real and imaginary products and extend
the signs after resealing with the aid of an OR operation in the case of negative products.
Also, the previous value of the real part of point 1 must be saved in temporary storage
during the butterfly calculation.

2.8 Sine/Cosine Lookup

This routine looks up the cosine and the sine of the current angle in the general
butterfly and stores them at locations 7942 and 7943, respectively (see Fig. 2-10). For
angles less than 90 degrees, the sine is equal to the table entry located at the starting
address 255 (which corresponds to an angle of zero degrees), plus an index increment
equal to the angle itself. The cosine of the same angle is obtained by indexing the starting
address by N/4 (which corresponds to an angle of 90 degrees) minus the angle. If the
angle is greater than 90 degrees, an index of N/2 minus the angle yields the sine and an
index equal to the angle minus N/4 yields the cosine. In the last-named case, the cosine
is complemented to a negative value before being stored.

Whenever a new stage of. the FFT calculation is entered, it is necessary first to check
whether this stage number exceeds M before proceeding. The stage is advanced by incre-
menting K. Before storing the updated K, it is compared to M, and if it does not exceed
M the value of R is reset to zero and a new initial angle is calculated for the new stage.
When K exceeds M the FFT program is finished.
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Fig. 2-8 - General butterfly
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SINCO 
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2.9 Real Multiplication

The shift-and-add multiplication of two real 16-bit numbers is coded as shown in the
flowchart of Fig. 2-11. The signs of the multiplier in the A3 register and the multiplicand
in the B register are tested, and if either one is negative, it is complemented and a con-
dition flag is set. The two positive factors are multiplied by repeatedly shifting the multiplier
to the right and testing its LSB for a value of zero. An LSB of zero causes the intermediate
product being formed in the B register to be shifted circularly one place right. An LSB
of one causes the multiplicand to be added to the contents of B before the circular shift.
The initial counter setting of 241 results in the loop being executed 16 times for counter
values of 241 through 256 (i.e., 0). After the last pass, the condition flags are tested and
the product is complemented if the conditions are not both the same. The routine then
looks up the return address, at location 7953, and jumps to this address with the result in
the B register.

2.10 Overflow, Real Data, and the Inverse Transform

The program, as written, contains no provision for dealing with overflows in the
arithmetic operations. Neigher does it include a 1/N factor which usually appears in the
transform definition, Eq. (1-1). If the entire data array is divided by two prior to each
stage of calculation, overflow will be prevented and the scale factor can be introduced at
the same time. Alternatively, conditional array scaling can be used to improve the accuracy
of the calculations and prevent overflow by checking for data values which will indeed
cause overflow and resealing the array only when such values appear.

When the input data are purely real, the efficiency of the FFT calculation can be
increased (compared to simply setting the imaginary components of the input data to
zero) by packing alternate input values into the real and imaginary locations of the Data
Area, and performing an N-point complex FFT on 2N real points, as described in Appendix B.
A subroutine for performing this function has been coded but not debugged; therefore, it
is not included in the present program. The coding comprises 93 instructions.

The only essential difference between the direct and inverse discrete Fourier transforms
is a change in the sign of the exponent angle in the complex weighting factor. When an
algorithm is suitably coded, it can be used for either procedure by changing angle increments
to decrements or conversely. In the subject program, provision could be made to change
the butterfly formulas according to a direct/inverse flag, or the direct transform could be
used with a simple component combining routine, as described in Appendix C, to generate
the inverse transform of conjugate symmetric coefficients. Neither of these procedures
has been programmed.

3. TEST RESULTS

The FFT program was used to calculate a number of test spectra varying in sample size
from 16 through 128 complex points. Some of the results appear in Table 1-1, which
shows the number of clock cycles required to perform each of the major functions and
also summarizes their required processing times. Some of the inputs and their output
spectra are listed in Figs. 3-1 through 3-6. They verify the symmetry relationships of the
Fourier transform.
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In Fig. 3-1, the input comprises 64 points representing one cycle of a sawtooth wave
which is a real, odd function with an average value of zero. The output consists of con-
secutive spectral lines of alternating sign which show an approximate 1/n envelope: 1300,
650, 433, 325, etc. The fundamental amplitude 1302 compares well with the value 1260,
corresponding to a continuous waveform. The nonzero real terms indicate the magnitude
of the computational error.

Figures 3-2 and 3-3 show the spectrum of a sine wave whose period is one-fourth of
the measurement period. The real, odd input yields an imaginary, odd output. In Fig. 3-3,
the symmetry is reflected about the N/2 point rather than the N point, as in spectra which
are carried to completion. Figure 3-3 shows two estimates of the spectral lines.

Input

Real part:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
0 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2
Imaginary part all zero.

Output

Real part:

0 0 -3 -3 -1 -7 -3 -4 0 -1 0 1 -1 -1 -1 -2
0 0 1 1 0 -1 0 -1 0 0 0 0 0 0 0 -1

0 1 1 1 1 1 0 0 1 0 1 1 1 1 0
0 0 1 1 0 3 2 1 0 0 0 -2 0 4 0 7

Imaginary part:

0' -1302 646 -434 320 -257 210 -168 154 -137 120 -108 95 -88 77 -71
64 -58 52 -49 43 -40 33 -31 26 -23 19 -16 12 -11 6 -4
0 4 -6 10 -12 15 -20 22 -26 31 -34 40 -43 48 -53 57

-64 72 -76 89 -95 106 -119 135 -154 181 -209 260 -32 435 -646 1302

Fig. 3-1 - SAW 164, Sawtooth, 1 cycle, 64 points

Input

Real part:

0 71 100 71 0 -71 -100 -71 0 71 100 71 0 -71 -100 -71
0 71 100 71 0 -71 -100 -71 0 71 100 71 0 -71 -100 -71

Imaginary part all zero.

Output

Real part all zero.

Imaginary part:

0 0 0 0 -1603 0 0 0 0 0 0 0 -3 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 1603 0 0 0

Fig. 3-2 - SIN 432, Sinusoid, 4 cycles, 32 points, M = 5
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Output

Real part all zero.

Imaginary part:

0 0 -801 0 0 0 -1 0 0 0 1 0 0 0 801 0
0 0 -801 0 0 0 -1 0 0 0 1 0 0 0 801 0

Fig. 3-3 - SIN 432, Sinusoid, 4 cycles,
32 points, M = 4

Input

Real part:

1000 995 981 957 924 882 832 773
707 634 556 471 383 290 195 98

0 98 195 290 383 471 556 634
707 773 832 882 924 957 981 995

Imaginary part all zero.

Output

Real part:

20356 6804 -1374 595 -341 222 -160 120
-100 84 -71 64 -59 57 -56 49
-44 50 -52 57 -59 64 -70 84

-100 122 -159 224 -341 597 -1373 6807

Imaginary part:

0 -2 -1 -3 0 -4 0 -2
0 -1 0 -1 0 0 -1 -1
0 0 1 -1 0 0 0 0
0 3 0 5 0 4 1 3

Fig. 3-4 - REC 132, Rectified cosinusoid,
1 cycle, 32 points

Jn Fig. 3-4, one-half cycle of a cosine wave is rectified and sampled 32 times for the
input. The real, even input yields a real, even output, and the numerical results, 20356,
6806, 1374, 596, etc., compare well with the values 20373, 6791, 1358, 654, corresponding
to a continuous waveform.

In Fig. 3-5, the real part of the input represents one cycle of a cosine waveform and
the imaginary part represents two cycles of a sine wave. Their separate spectra can be
obtained from the spectrum A(n) of the complex input by using the relations

Areal (n) = 1/2 [A (n) + A* (N-n) (3-1)

Aimag (n) = [A(n) - A* (N-n)], (3-2)

where * denotes the complex conjugate. When these equations are applied to the A(n)
of Fig. 3-5, the individual spectral lines appear at their correct frequencies.
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Input

Real part:

100 98 92 83 71 56 38 20 0 -20 -38 -56 -71 -83 -92 -98
-100 -98 -92 -83 -71 -56 -38 -20 0 20 38 56 71 83 92 98

Imaginary part:

0 38 71 92 100 92 71 38 0 -38 -71 -2 -100 -92 -71 -38
0 38 71 92 100 92 71 38 0 -38 -71 -2 -100 -92 -71 -38

Output

Real part:

0 1595 1596 -4 0 0 0 2 0 2 -2 -2 0 3 -6 -2
0 -1 6 4 0 -2 2 2 0 4 0 2 0 -1 -1596 1598

Imaginary part:

0 -1 -1 -3 0 -2 0 -1 0 0 -1 -1 0 -1 0 1
0 -1 1 1 0 0 0 -1 0 2 1 3 0 3 0 1

Fig. 3-5 - CS 32, One-cycle cosine/two-cycle
sine, 32 points

Figure 3-6 illustrates the spectrum of a pulse (actually a square wave) which has a
duty cycle of 75%. The magnitudes of the spectral lines are in close agreement with the
(sin x)/x envelope expected for a pulse. The average value of 2400 is the product of the
pulse amplitude, the duty cycle, and the number of points.

4. SUITABILITY OF THE D-MACHINE TO
SIGNAL PROCESSING

The FFT test program reveals several deficiencies in the D-Machine as a signal processor.
Despite its use of 54 bits in the control nano instructions, the effective concurrency of
operations is low. Part of the reason for this is the scarcity of working registers (Al, A2,
A3, B, and MIR) which could be used to hold intermediate results and to perform logic
unit operations during memory accesses. As it is, many memory accesses occur as isolated
operations; with more working registers, they could be run concurrently with LUOP's. And
in some instances, such as the complex multiplication of B4BK through MRTN8, intermediate
results are stored in S memory because there are not enough working registers available.

In a similar manner, there is a scarcity of registers for holding program branch addresses.
The single AMPCR is employed in branches within subroutines, while the calling routine's
return address is stored in S memory. When the subroutine does not disturb the contents
of MIR and these contents are not being saved as intermediate results, the return address
may be saved in MIR without writing it in S memory. However, this may require some
register juggling at the end of the subroutine because MIR can be loaded only into B and B
frequently (as in the case of MUPY) contains the result of the subroutine computations.
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Input

Real part:

100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 0 0 0 0 0

100 100
0 0

Imaginary part all zero.

Output

Real part:

2400
0
0
0

-455
10
55

110

Imaginary part:

0 -558
0 -91
0 -44
0 13

100 213 0 -47 100
99 76 0 34 99

100 35 0 77 100
101 -44 0 216 101

-502
-68

20
150

-113
24
65

144

0
0
0
0

-144
-66
-24
144

-150
-20

68
502

108
54
10

-452

-12
44
90

558

Spectral Magnitudes

2400 1438 1022 485 0
0 184 246 160 0

Normalized Magnitudes

1.0 0.598 0.425 0.205 0
0 0.077 0.102 0.067 0

[Sin(3n7r/4)]/(3n7r/4) Envelope

1.0 0.600 0.424 0.200 0
0 0.067 0.085 0.055 0

301 358 220

0.125 0.149 0.092

0.120 0.141 0.086

Fig. 3-6 - P 2432, Pulse, 75% duty cycle, 32 points

The concurrency is also reduced by the division of the microinstructions into Types I
and II, which are mutually exclusive, and the separation of the Type II instructions into
those which load the AMPCR and those which load the SAR and/or LIT. The prohibition
of branches to Type II instructions, the lack of sign extension on right shifts, and the con-
straints on the allowable X and Y inputs to the adder were also found to require excess
coding. The availability of only two local condition flags was found to be sufficient.

All of these deficiencies are minor, however, compared to the fact that the D-Machine
operates in an essentially serial manner. The performance figures cited in Table 1-1 can
be improved by orders of magnitude by using high-speed memories in a parallel processing
structure (1).

100
0
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Appendix A

PROGRAM LISTING

FFT. LIT L = BR2 
31 LITCOMP 8 = SAR S
0 = MAR IF LC1 THEN STEP ELSE SlEP S RESEl LC1
MR2 LCTR S TO GET LOG N SCAN N FOR FIRST '1'
12 = LIT,1 = SAR S
WHEN RDC THEN BEX S

LOGNCK. IF NOT LST THEN SET LC1 INC S
SINTAB - I = AMPCR 
IF LCI THEN STEP ELSE JUMP S
LOGNCK - 1 = AMPCR S
B R = B IF NOT COV THEN JUMP ELSE STEP S
FINISH - I = AMPCR S
JUMP S

SINTAB. CTR - LIT = MIR Al S LOG N = CIR - 244
244 = LIT S
LMAR S
4 LITCOMP 12 = SAR S BINARY PT. AT 20/21
MW2 S STORE LOG N
LIT L = A2 S
WHEN RMI THEN BMAR + = MAR2 S
1 = MIR S

MW2 S STORE INDEX.I
Al SAR B S TO SHIFT RIGHT BY LOG N
A2 R Al S ANGLE ELEMENT=4/N
FINISH - 1 = AMPCR S
WHEN RMI THEN LIT - 8 = B S
2 LIT S
IF NOT AOV THEN LMAR SlEP ELSE JUMP S IF LOG N OR =2
16 LIT S
Al = MIR S
BITREV - 1 = AMPCR S ******* THIS JUMP SKIPS THE
JUMP S SINE TABLE GENERATION ***********
MW2 S
WHEN RMI THEN STEP S SAVE X, PT. AT 20/21

LOOP1. STEP S CURRENT ANGLE IS IN A1. PT. AT 20/21
MRTN1 - = AMPCR S
AMPCR = MIR LMAR S
17 = LIT S
MW2 S
MUPY - 1 AMPCR S
WHEN RMI THEN Al = A3 B MIR CALL S FORM X**2.PT. AT 8/9
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MRTNl LMAR $
18 = LIT 10 = SAR S
MW2 S SAVE CURRENI ANGLE# PT. AT 20/21
WHEN RMI THEN B R = B MIR LMAR S RE.S1ORE P. TO 18/19
13 LIT S
MW2 S SAVE X*2* PT. AT 18/19
MRTN2 - I AMPCR S
WHEN RMI THEN AMPCR MIR LMAR 
17 LIT S
MW2 $ SAVE RETURN ADDRESS
MUPY - I AMPCR S
WHEN RMI THEN B a A3 CALL S FORM X**4p PT. AT 4/5

MRTN2. B R = B S RESTORE PT. TO 18/19
14 = SAR $
LIT L = A3 S
18 LITPCOMP 8 = SAR S 0000.1200 HEX. PT. AT 16/17
A3 OR LIT R = A3 S
157 = LITP2 = SAR S 0000.129DP PT. AT 18/19
MRTN3 - = AMPCR $
AMPCR = MIR LMAR S
17 = LIT S
MW2 S
MUPY - = AMPCR S
WHEN RMI THEN CALL S FORM CSX**4p PT. AT 4/5

MRTN3. B R Al LMAR S PARTIAL SUM TO Alp PT. AT 18/19
13 = LITI4 = SAR S
MR2 S RECALL X**2
LIT L = A3 S
164 = LITCOMP 8 SAR S 000.A400 HEX
A3 OR LIT R = A3 S
171 = LIT,2 = SAR S 0000oA4ABv PT. AT 18/19
MRTN4 - 1 = AMPCR S
AMPCR 3 MIR LMAR S
17 = LIT S
WHEN RDC THEN BEX MW2 
MUPY - I = AMPCR S
WHEN RMI THEN CALL FORM C3X**2. PT. AT 4/5 IN A3

MRTN4. B R = B S
14 SAR S
Al - B = Al $ PARTIAL SUM
LIT L = A3 S

= LITPCOMP 8 = SAR S
A3 OR LIT L = A3 
146 = LIT S
A3 OR LIT S B S
20 = LIT,2 = SAR S 0001.9214P PT. AT 18/19
Al + B A3 LMAR S FINAL SUM
18 = LIT S
MR2 S RECALL CURRENT ANGLE VALUE
MRTN5 - I = AMPCR S
WHEN RDC THEN AMPCR = MIR LMAR BEX S
17 = LIT S
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MW2 B Al S SAVE RETURN ADDkESS
MUPY - I = AMPC S TOTAL ANGLE IS IN Al
WHEN RMI THEN CALL S FORM SINE VALUEP PT. AT 6/7

MRTN5. B R = MIR LMAR S
0 = LIT,12 = SAR $ MOVE PT. TO 18/19
MR2 READ N
WHEN RDC THEN BEX S
B = A3 LMAR S N TO A3
5 = LI S

MR2 S READ INDEX
WHEN RDC THEN BEX S
LIT = A2 S FIRST NON-ZEkO ENTRY IS AT 256
255 = LITCOMP 8 = SAR S
A2 B = MARI S CURRENT ADDRESS IN TABLE
MW1 S STORE SINE VALUE
WHEN RMI THEN B + 1 = A2 MIR LMAR $ INCREMENTED I
5 = LIT S
MW2 A3 R B S STORE INDEXI
2 = SAR S TO GET N/4
BITREV - 1 = AMPCR S
A2 -B = B S
IF NOT AOV THEN LMAR STEP ELSE JUMP S
16 = LIT $
MR2 S
LOOPI - 1 = AMPCR S
WHEN RDC THEN BEX S RECALL ANGLE ELEMENT, 4/N
Al + B = Al JUMP INCREMENT ANGLE

MUPY. B = B IF LCI THEN STEP ELSE STEP $RESET LC1
IF NOT MST THEN B = A2 SET LC1 SKIP ELSE STEP S TEST B SIGN
0 - B A2 IF LC2 THEN STEP ELSE STEP COMPLEMENT B. RESET LC2
A3 = A3 B $
IF NOT MST THEN SET LC2 SKIP ELSE SEP $ TEST A3 SIGN
0 - B = A3 COMPLEMENT MULTIPLIER
0 = B LCTR 
1 = SAR.14 = LIT S
A3 R A3 SAVE S TEST MULTIPLIER BIT
IF NOT LST HEN B C = B SKIP ELSE STEP S
A2 + B C = B S
INC IF NOT COV THEN STEP ELSE SKIP S
A3 R - A3 JUMP 
B C =B $
16 - SAR S
ENDMUL - 1 = AMPCR 
IF LC1 THEN STEP ELSE SKIP 
IF NOT LC2 THEN SKIP ELSE JUMP $
IF LC2 THEN STEP ELSE JUMP 
0 - B B 

ENDMUL. LMAR S
17 = LIT 
MR2 S
B = A2 S SAVE PRODUCT
WHEN RDC THEN BEX S
B = AMPCR 
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A2 = B JUMP S TO RETURN ADDRESS
BITREV 0 Al A3 S Al HOLDS TABLE INDEX, A3 IS ENTRY (BIT-REVERSED

LIT L = BRI LMAR S BITHEV TABLE STARTS AT 512 NUMBER)
COMP 9 SAR-I = LIT S
MR2 S READ M
WHEN RDC THEN 1 = A2 BEX S
B = SAR S
CSAR S
A2 L = A2 MIR LMAR $
14 = LIT S
MW2 S STORE 2**M
WHEN RMI THEN 0 = MAR S

RVCTRI. MRl A3 = MIR S A3 HOLDS THE ENTRYJ MR1 SETS UP BMAR
WHEN RC THEN Al + BMAR = MAR S
MWI Al + 1 = Al $ STORE ENTRY, INCREMENT INDEX
WHEN RMI THEN LMAR S
14 = LIT S
MR2 S READ 2**M
WHEN RDC THEN EX S
B = A2 S
A2 - 1 B S
RVCTR4 1 = AMPCR S
A3 EQV B = S ENTRY=(2**M)- ?
IF NOT AT THEN LCTR STEP ELSE JUMP S
32 = LIT.l = SAR S

RVCTR2. A2 R B S MOVE MASK BIT TO RIGHT
A3 AND B = A2 S "AND" ENTRY WITH MASK
RVCTR2 - 1 = AMPCR S FIND POSITION OF 1ST ZERO BIT
A2 EV 0 a S START WITH MSB (J=)
IF NOT AST THEN INC JUMP ELSE STEP $

RVCTR3. MR2 CTR - LIT = SAR A2 S
222 = LIT S
WHEN RDC THEN 0 = MAR EX S
B R B S
A3 + B = A3 SAVE S ADD 2**(M-J) TO OLD ENTRY
A2 EV B001 = S
IF NOT ABI THEN SET LC1 SKIP ELSE STEP S
RVCTR1 - 1 = AMPCR S
IF LC1 THEN A2 - 1 = A2 STEP ELSE JUMP S
B L = B S
COMP I = SAR SUBTRACT 2*(M-J) FOR VALUES OF J DOWN TO 1
A3 - B = A3 JUMP $

RVCTR4. B001 + 1 = MAR S
MR2 0 A2 S
WHEN RDC THEN BMAR + 1 = MAR2 BEX S
MR2 B = Al S DATA ADDRESS IN Al
WHEN RDC THEN EX RESULT ADDRESS IN B
MOVDAT - 1 = AMPCR S PREPARE TO MOVE DATA TO RESULTS AREA
Al EQV B = DATA ADDRESS=RESULTS ADDRESS ?
IF ABT THEN STEP ELSE JUMP S IF YES* DO BIT REVERSAL

REVPTS. I = MAR S
MR2 S READ M



H. H. SMITH

IHEN RDC THEN 0 = MAR BEX S
MR2 B = SAR S READ N
WHEN RDC THEN BEX S
B R = A2 S
A2 + Bll = CTR S

RSET. 0 A2 S RESET INDEX I
LOOP2. LIT L B S

2 = LITCOMP 8 = SAR S
A2 + B = MAR S
MR1 S READ BITREV(I)
WHEN RDC THEN A2 L = MIR BEX S FORM 2I IN MIR
COMP I = SAR S
AROUND - = AMPCR S IF IBITREV
A2 - B S S THEN STEP TO BIT REVERSAL
IF NOT AOV THEN B L = B STEP ELSE JUMP S (B)=2BITREV
Al + B = A3 BMI SS+2BITREV TO A3J2I TO B
Al + B = A2 MAR $ SS+21 SS=SECTION START ADDRESS)
MRI S
WHEN RDC THEN A3 = MARI BEX S READ (SS+21) INTO B & MIR
MR1 B = MIR S
WHEN RDC THEN BEX S READ (SS 2BI1REV) INTO B
MW1 S STORE SS+2I) IN SS.2BITREV
WHEN RMI THEN B MIR 
A2 = MAR S
MW1 A2 + I = A2 $ STORE SS+2BITREV) IN SS+21
WHEN RMI THEN A2 = MAR S
MRI A3 + I = A3 
WHEN RDC THEN A3 = MARI BEX S READ (SS+21+I) INTO B & MIR
MR1 B = MIR S
WHEN RDC THEN BEX READ ( SS + 2BITREV + ) INTO 
MW1 $ STORE SS+2II) IN SS+2BITREV+1
WHEN RMI THEN B = MIR S
A2 = MAR S
MWIl A2 - LI1 = A2 STORE CSS+2BITREV+l)
I = LITal = SAR S
Al = B S
WHEN RMI THEN A2 - B R A2 S RESTORE I TO A2

AROUND. A2 + I = A2 LMAR $ INCREMENT INDEX
14 = LITCOMP I SAR S
MR2 S
WHEN RDC THEN BEX S READ 2**M
LOOP2 - I AMPCR S
A2 - B = S INDEX<2**M ?
IF AOV THEN INC STEP ELSE JUMP S IF SO, JUMP
ZERDEG - 1 a AMPCR S
B L = B $
IF NOT COV THEN STEP ELSE JUMP S
RSET - 1 AMPCR S
Al B = Al JUMP S

MOVDAT. B A3 S (A3)=RESULTS ADDRESS
RETRN. A2 = B S A2)=INDEX I

Al + B = MARl $ (Al)=DATA ADDRESSi DA4I=SOURCE
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MR1 S
WHEN RDC THEN BEX S
B z MIR S SOURCE DATA TO MIR
A2 = B S
A3 B MARI S RA+I=DESTINATION
MWI S MOVE SOURCE DATA TO DESTINATION
WHEN RMI THEN B + I = A2 LMAR S INCREMENT INDEX
0 LITCOMP I SAR 
MR2 S READ N
RETRN - I = AMPCR S
WHEN RDC THEN BEX S
B L = 5
A2 - 8 = S IS 1 OR 2N-1 ?
IF NOT AOV THEN JUMP ELSE STEP S IF SO, RETURN
REVPTS - 1 AMPCR S IF NOT JUMP
A3 = Al JUMP S RESULTS ADDRESSuFIRST SECTION START ADDRESS

ZERDEG. B001 + I = MIR S INITIAL SPACING a 2 MEMORY LNCS
;ERDEG1. LMAR S

14 = LIT S
MR2 S READ 2**M
NINDEG - 1 = AMPCR S
WHEN RDC THEN BEX S
B A2 BMI S (B)=SPACING) (A2)=2**M
A2 - B = $
IF AOV THEN LMAR STEP ELSE JUMP S
11 = LIT S
MW2 S
WHEN RMI THEN LMAR S
3 LIT S
MR2 S
WHEN RDC THEN BEX S READ RESULTS ADDRESS
B = Al BMI 
Al - B = A2 S INITIALIZE P2R TO RA-SPACING

BIBK. LMAR S RECALL SPACING
11 = LIT S
MR2 S
WHEN RDC THEN BEX S
B = MIR S SAVE SPACING FOR ADVSPC
A2 B = Al S ADD SPACING TO OLD P2R DDRESS
Al + B = A2 LMAR S ADD SPACING TO NEW PR ADDRESS
0 a LIT.COMP I = SAR S
MR2 S
WHEN RDC THEN BEX S READ N
B L = A3 LMAR S CHECK IF NEW P2< OR=2N-1 BY
3 LIT S USING P2-(2N-l)-l a P2-2N
MR2 READ RESULTS ADDRESS
WHEN RDC THEN BEX S
A3 + B B S (B)= RA+2N-1
ADVSPC - 1 a AMPCR S
A2 - B S IF P2R ADDRESS< OR=(B)* STEP
IF NOT AOV THEN STEP ELSE JUMP S TO BUTTERFLY

BFLY1. Al a MARI S PIR ADDkESS
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MRI S
WHEN RDC THEN A2 = MARI BEX S P2R ADDRESS
MRI B = A3 $ PIR TO A3
WHEN RDC THEN BEX S
A3 - B = MIR S
MWI S NEW P2R = PR-P2R
WHEN RMI THEN A3 + B = MIR S
Al = MARI S
MWl NEW PIR = PIR+P2R
WHEN RMI THEN Al + I = MARI S
MR1 S READ P1I
WHEN RDC THEN A2 + I = MARI BEX 
MR1 B = A3 $ P1 TO A3
WHEN RDC THEN BEX S
A3 - B = MIR S
MWI S NEW P2 = PI-P21
WHEN RMI THEN A3 + B = MIR S
Al + 1 = MAR S
MWl S NEW P11 = PII+P2I
B1BK - 1 = AMPCR S
WHEN RMI THEN JUMP S

ADVSPCo MI S
B L = MIR S NEW SPACING
COMP I = SAR S
ZERDEG1 - 1 = AMPCR S
JUMP S

NINDEG. LIT = MIR S
4 = LIT S

NINDEGI. LMAR S
14 S LIT S
MR2 S
FRTYFV - I = AMPCR S
WHEN RDC THEN BEX S
B = A2 BMI S
A2 - B = 
IF AOV THEN B R a B LMAR STEP ELSE JUMP S
11 = LITal SAR S
MW2 S
WHEN RMI THEN B MIR LMAR S HALF SPACING TO MIR
3 LIT S
MR2 S
WHEN RDC THEN BEX S READ RA
B = Al BMI S
Al + B Al S RA+HALF SPACING
B L = B MIR S RESTORE FULL SPACING
COMP I a SAR $
Al - B A2 S INITIALIZED P2R

B2BK. LMAR 
Ii = LIT 
MR2 S
WHEN RDC THEN BEX S
B = MIR S SAVE SPACING FOR MOVSPC
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A2 + B = Al S
Al + B = A2 LMAR S
0 = LIT.COMP I = SAR S
MR2 S
WHEN RDC THEN BEX S READ N
B L = A3 LMAR $
3 = LIT $

MR2 
WHEN RDC THEN BEX S
A3 + B B S
MOVSPC - I AMPCR S
A2 - B = $ IF P2R ADDRESS< OR =(B)p STEP TO
IF NOT AOV THEN STEP ELSEJUMP S BUTTERFLY

BFLY2. Al = MARI $ PIR ADDRESS
MR S
WHEN RDC THEN A2 + I = MARl BEX 
MRI B = A3 READ P21
WHEN RDC THEN Al = MARl BEX S
A3 + B = MIR S
MWIl S NEW PIR = PIR+P2I
WHEN RMI THEN A3 - B a MIR S NEW P2R = PIR-P21
A2 = MARI $ P2R ADDRESS
MRI SREAD OLD P2R BEFORE IT IS LOST
WHEN RDC THEN BEX 
MWI B = A3 STORE NEW P2Rj (A3)=OLD P2R
WHEN RMI THEN Al 1 = MARl $ P11 ADDRESS
MRI S
WHEN RDC THEN A3 MIR BEX 
B = A3 BM1 $ P2R TO B P1I TO A3
A3 - B = MIR S
MWI $ NEW P1I = PI-P2R
WHEN RMI THEN A2 + I = MARI $ P2I ADDRESS
A3 B = MIR 
MWI S NEW P2I P:I+P2R
B2BK - I AMPCR .
WHEN RMI THEN JUMP $

MOVSPC* BMI S
B L = MIR S
COMP 1 = SAR 
NINDEGI - AMPCR $
JUMP 

FRTYFV. LIT MIR 
8 = LIT S

FRTYFVI. LMAR S
14 = LIT 
MR2 
FRTYFV2 - I = AMPCR 
WHEN RDC THEN BEX S
B = A2 MI 
A2 - B S
IF AOV THEN LMAR STEP ELSE JUMP 
11 LIT S
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MW2 
WHEN RMI THEN LMAR S
3 LIT S
MR2 S
WHEN RDC THEN BEX S
B = Al BMI S
B R = B A2 S (B)=SPACING/4
2 = SAR S
ANGI - AMPCR S IF LCI IS SET* THE
IF LCl THEN B A2 STEP ELSE JUMP S ANGLE IS 3N/8
A2 + B = A2 SET LCl S
A2 + B = B S (B)=3SPACING/4

ANG8. B = A3 BMI S START ADDRESSC=1/4 OR 3/4 SPACING) IN A3
A3 - B = B S INITIAL PIR OFFSET
Al + B a A2 S INITIALIZED P2R ADDRESS

B3BK. LMAR S
l1 l LIT S
MR2 S
WHEN RDC THEN EX S
B MIR S SAVE SPACING FOR MORSPC
A2 + B = Al S
Al B = A2 LMAR S
0 = LIT.COMP I SAR S

MR2 S
W1HEN RDC THEN BEX S READ N
B L = A3 LMAR S
3 = LIT S
MR2 S
WHEN RDC THEN BEX S READ RESULTS ADDRESS
A3 B = B S (B)=RA+2N-1
MORSPC - 1 S AMPCR S
A2 - B S P2R ADDRESS:(B)
IF NOT AOV THEN STEP ELSE JUMP S IF P2R ADDRESS4 OR 

BFLY3o A2 + 1 MARI S P2R ADDRESS IN A2
MRI S READ P21
WHEN RDCTHEN A2 MARI BEX S
MRI B A3 S READ P2R
WHEN RDC THEN Al = MARl BEX S
MRl B = MIR S P2R TO MIR TEMPORARILY
WHEN RDC THEN BEX S READ PIR
B Al MI S
ANGLI - I AMPCR S
IF LCl THEN JUMP ELSE STEP S
MBY707 - 1 = AMPCR S ANGLE IS N8
A3 - B MIR S
A3 B * B CALL S
STEP S
ANGL2 - a AMPCR S
JUMP S

ANGLI SET LC1 S ANGLE IS 3N/8
MBY707 - a * AMPCR S
A3 + B * MIR S
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A3 - B = B CALL S
ANGL2. Al + B = A3 S NEW PIR TO A3

Al B Al S NEW P2R TO Al
A3 = MIR BMI S
MWI S NEW PIR
MBY707 - I = AMPCR S
WHEN RMI THEN BMAR + 1 = MARI CALL S
MR1 B = MIR S PRODUCT TO MIR TEMPORARILY
WHEN RDC THEN BEX S READ PII
B = A3 BMI $ PIZ TO A35PRODUCT TO B
ANGL3 - 1 = AMPCR S
IF LCI THEN SKIP ELSE STEP S
A3 + B = MIR JUMP S
A3 - B MIR SET LC S

ANGL3. MWI S STORE NEW P1I
WHEN RMI THEN Al = MIR S
A2 = MARI S
MWI S STORE NEW P2R
WHEN MI THEN A2 I = MAR S
ANGL4 - I = AMPCR S
IF LCI THEN SKIP ELSE STEP S
A3 - B = MR JUMP S
A3 + B = MIR SET LCI S

ANGL4. MWI S STORE NEW P21
B3BK - I = AMPCR S
WHEN RMI THEN JUMP S

MBY707. B = A3 S MULTIPLICAND TO A3
IF MST THEN 0 - B A3 SET LC2 STEP ELSE SKIP S
0 - B = B S
B R = B S SHIFT FIRST PARTIAL PRODUCT
I = SAR S
B R = B S SECOND BIT OF B5(HEX) IS 0
A3 + B R = B S THIRD BIT IS A I
B R = B S
A3 + B R = B S
A3 + B R = B S
B R =B S
A3 + 8 R = B S
IF LC2 THEN 0 - B B JUMP ELSE JUMP S

FRTYFV2. STEP S
GNRLI - I = AMPCR S
IF NOT LCl THEN STEP ELSE JUMP S
FRTYFV - 1 = AMPCR S
SET LCI JUMP S

MORSPC. BMI S
B L = MIR S
COMP I = SAR S
FRTYFVI - 1= AMPCR S
JUMP S

GNRLI. LIT R S Al MIR LMAR S
8 = LITwl S SAR S
MW2 S ANGLE DENOMINATOR EXPONENT K
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WHEN RMI THEN 0 = A2 MIR LMAR S
9 = LIT.COMP I = SAR S
MW2 S INITIAL NUMERATOR FACTOR, R 0
WHEN RMI THEN LIT = MIR S
16 = LIT S

GNRL2. LMAR S
11 = LIT S
MW2 
WHEN RMI THEN LMAR S
8 = LIT S
MR2 S READ EXPONENT. K
WHEN RDC THEN BEX S
B = Al SAR LMAR S SAVE K IN Al
14 = LIT S
MR2 
NEWANG - 1 = AMPCR S
WHEN RDC THEN BEX S
B = A3 BMI S (A3)=2**Mp (B)=SPACING
A3 - B = S
IF NOT AOV THEN 1 = A2 CSAR LMAR STEP ELSE JUMP S
11 = LIT S
A2 L = A2 MIR S
MW2 S STORE SPACING=2**K
WHEN RMI THEN LMAR S
9 = LIT S
MR2 A2 R = A2 S 2**(K-2)
1 = LIT.2 = SAR S
WHEN RDC THEN BEX 
NEWR - 1 = AMPCR $
LIT + B I = B MIR S NEW R + 
A2 - B = S
IF NOT AOV THEN A2 L = A2 MIR LMAR STEP ELSE JUMP $
11 = LIT.COMP 3 = SAR S
MW2 S
WHEN RMI THEN Al 1 = Al MIR LMAR S

= LIT $
MR2 S
FINISH - 1 = AMPCR S
WHEN RDC THEN BEX S
Al - B - 1 = S
IF NOT AOV THEN LMAR STEP ELSE JUMP S
8 = LIT S
MW2 $ STORE UPDATED K
WHEN RMI THEN 0 = A2 MIR LMAR S
9 = LIT.COMP 1 SAR S
MW2 S SET' R=0
WHEN RMI THEN STEP 

NEWANG. LMAR S
9 = LIT.COMP 1 = SAR S
MR2 
WHEN RDC THEN BEX S
B L = A2 S 2R IN A2
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A2 I A3 S SAVE IN A3 FOR LATER MULTIPLY
SINCO - = AMPCR S
AMPCR = MIR LMAR 
17 = LIT S
MW2 S STORE RETURN ADDRESS
MUPY - I AMPCR S
WHEN RMI THEN 0 = MAR S
MR2 S READ N
WHEN RDC THEN Al = SAR BEX S DIVIDE N BY 2**K
B R = B JUMP MULTIPLY BY (2R+1)

SINCO B = A3 LMAR S
0 = LIT.2 = SAR S
MR2 S
255 = LIT S
GRETR - I = AMPCR S
WHEN RDC THEN BEX S
B R A2 B S N4
A3 - B B S IS ANGLE ' N/4
IF NOT AOV THEN 0 - B = B STEP ELSE JUMP 'S
LIT + B = MAR $ INDEX SINTBL BY (N/4-ANGLE)
MR1 S READ COS
WHEN RDC THEN BEX S
B = MIR S COS TO MIR
A3 + LIT MAR S INDEX SINTBL BY ANGLE
MR1 S READ SINE
WHEN RDC THEN LMAR BEX S
6 LIT S
MW2 S STORE COSINE
WHEN RMI THEN BMAR + I _ MAR2 S
B = MIR S
MW2 S STORE SINE
SPCNG - I AMPCR $
WHEN RMI THEN JUMP S

GRETR. LIT + B = MAR $ INDEX SINTBL BY (ANGLE-N/4)
MRI 0 - B = A3 $ N/4-ANGLE IN A3 READ COS
WHEN RDC THEN BEX 
0 - B = MIR LMAR COS IS NEGATIVE
6 LIT $
MW2 A2 a B $ STORE COSI (B)N/4
A3 + B = B $ N/2-ANGLE
WHEN RMI THEN LIT + B = MAR S
255 = LIT $ INDEX SINTBL TO GET SINE
MR1 $ )EAD SINE
WHEN RDC THEN LMAR BEX 
7 = LIT S
B MIR 
MW2 $ STORE SINE
WHEN RMI THEN STEP 

SPCNG. LMAR S
11 = LIT S
MR2 $ READ SPACING
WHEN RDC THEN BEX LMAR S
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8 = LIT S
MR2 B = A3 MIR S
WHEN RDC THEN BEX S READ K
B = SAR LMAR S
9 = LIT S
MR2 A3 R = A3 S SPACING/2**K
WHEN RDC THEN BEX S READ R
B = Al S
Al + B + I = Al S 2R+1
SUBNXT - a = AMPCR S
AMPCR = MIR BMI LMAR S
17 = LT $
MW2 S
MUPY - 1 = AMPCR S
WHEN RMI THEN B = MIR S SAVE SPACING
Al = B JUMP S C2R+l)SPACING/2**K

SUBNXT. B L = A3 BMI LMAR S RECALL SPACING
COMP I = SAR*3 = LIT S
MR2 A3 - B = A S OFFSET = A3)-SPACING
WHEN RDC THEN EX LMAR $
12 = LIT $
A2 B = A2 MIR S
MW2 S OFFSET ADDRESS TO P2 STORE
WHEN RMI THEN STEP S

B4BK. LMAR $
11 = LIT S
MR2 S READ SPACING
WHEN RDC THEN MAR + 1 = MAR2 BEX S
MR2 B = MIR S SAVE SPACING IN MR
WHEN RDC THEN EX S READ OLD P2R ADDRESS
B A2 BMI S OLD P2R TO A2, SPACING TO B
A2 + B = Al S
Al + B A2 Al MIR S NEW P2 ADDRESS IN A2&AI
MW2 S STORE P2R ADDRESS
WHEN RMI THEN B * MIR LMAR S
0 = LITCOMP I = SAR S

MR2 S CHECK IF NEW P2' OR=2N-1
WHEN RDC THEN EX S BY USING
ADVSPG - I = AMPCR S P2-C2N-1)-lzP2-2N
B L = A3 LMAR 
3 = LIT S
MR2 S READ RA
WHEN RDC THEN SEX S
A3 + B = B S RA+2N
A2 - B S P2:RA+2N
IF NOT AOV THEN STEP ELSE JUMP S JUMP IF P2:'

BFLY4. Al MAR S
MRI SREAD P2R
WHEN RDC THEN LMAR BEX S
7 = LIT S
MR2 B * A3 SREAD SINE
WHEN RDC THEN EX S
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MRTN6 - = - AMPCR S
AMPCR MIR LMAR S
17 = LIT S
MW2 S
MuPY - = AMPCR S
WHEN RMI THEN B MIR CALL S

MRTN6. B = MIR BMI S SINE TO B
B = A2 BMI S HOLD SINE IN A2
MRTN7 - 1 = AMPCR S
AMPCR = MIR LMAR S
17 = LIT S
MW2 S STORE RETURN ADDRESS
WHEN RMI THEN A2 MIR 
B = MIR BMI LMAR S P2RSINE TO MIR) SINE TO B
6 = LIT 
MR2 B = A3 S SINE TO A33 READ COSINE
WHEN RDC THEN BEX $
A3 + B A2 SSIN + COS IN A2
B = A3 SCOS TO A3
Al MAR S
MRI SREAD P2R
WHEN RDC THEN BMAR I MARI BEX S
MR1 B = Al SP2R TO Al
WHEN RDC THEN LMAR BEX SREAD P21
15 = LIT S
MW2 Al + B = Al SSTORE P2RSINE
MUPY - I AMPCR S
WHEN RM1 THEN A2 = MIR CALL S

MRTN7. B = MIR BMI S
B = A2 8MI S
MRTN8 - I = AMPCR S
AMPCR MIR LMAR S
17 LIT S
MW2 S
WHEN RMI THEN Al = A3 $
MUPY - I = AMPCR S
B Al S
A2 = B CALL S

MRTN8. LMAR S
15 = LIT.14 SAR S
MR2 B = A2 SRECALL P2RSINE
WHEN RDC THEN BEX S
Al - B R = A3 S PRELIMINARY IMAGINARY RESULT
Al + B B IF MST THEN SET LCI S
A2 - B R A2 B S PRELIMINARY REAL RESULT
LIT L = Al IF MST THEN SET LC2 S
63 = LITCOMP 8 SAR S
Al OR LIT L Al S
255 LITCOMP 18 = SAR S
LMAR S ***TO ALLOW Al TO CHANGE***
12 = LIT S
IF LC2 THEN Al OR B = A2 S REAL
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IF LC1 THEN A3 = B STEP ELSE SKIP S
Al OR B = A3 S IMAGINARY
MR2 S READ P2R ADDRESS
WHEN RDC THEN LMAR BEX S
11 = LIT S
MR2 B = Al S
WHEN RDC THEN BEX S
Al - B MAR S
MR1 S READ PR VALUE
WHEN RDC THEN BEX LMAR S
13 LIT S
B = MIR 
MW2 S SAVE OLD PIR
WHEN RMI THEN A2 + B = MIR LMAR S
11 = LIT S
MR2 S READ SPACING
WHEN RDC THEN BEX S
Al - B = MAR S
MWI1 $ STORE NEW PIR
WHEN RMI THEN BMAR + I = MAR S
MRI S READ P1I VALUE
WHEN RDC THEN BEX S
A3 B = MIR S
MWI S STORE NEW P11
WHEN RMI THEN Al + 001 = MARI S P21 ADDRESS
A3 = MIR S SAVE P2W**N IMAGINARY PART
B = A3 BMI S P11 VALUE TO A3
A3 B = MIR $
MWl $ STORE NEW P2I
WHEN RMI THEN LMAR $
13 = LIT S
MR2 A2 = MIR S SAVE P2W**N REAL PART
WHEN RDC THEN'BEX S
B = A2 BMI $ PR VALUE TO A2JREAL PART TO B
A2 B = MIR S
Al - MAR S
MWI S STORE NEW P2R
B4BK - I = AMPCR S
WHEN RMI THEN JUMP S

ADVSPG. BM S
B L = MIR S

COMP 1 = SAR S
GNRL2 - 1 = AMPCH S
JUMP 

NEWR. B A2 LMAR S
9 = LIT.COMP = SAR S
A2 - 1 A2 MIR S
MW2 S
NEWANG - = AMPCR S
WHEN RM1 THEN JUMP S

FINISH. STEP S
END $
READY.
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Appendix B

REAL-VALUED INPUT SEQUENCE

The direct transform of 2N real input samples may be found efficiently by storing
consecutive samples in consecutive locations in the Data Area, and performing an N-
dimensional (complex) transform. The input sequence, X(q), q = 0, 1, . . . , 2N-1, can
be separated into two N-dimensional sequences; Xl(j), even-numbered input points, and
X 2 (j), the odd-numbered input points. Since X(q), X 1(j), and X 2(i) are strictly real,
their transforms, denoted by C(q), A 1 (n), and A2 (n), respectively, possess the property
of conjugate symmetry (*denotes the complex conjugate):

C(N+m) = C* (N-m) m = 0, 1, ..., N-1 (Bi)

A 1 (N/2+n) = A 1 * (N/2-n) (B2)

A 2 (N/2+n) = A 2 * (NI2-n) n = 0, 1, ..., N/2-1. (B3)

The relationship between C, AI, and A2 may be derived by stretching X1 and X2 to
dimension 2N by interspersing zeros between the original input samples. It is easy to show
that this stretching introduces a factor of 1/2 in the transforms. The input sequence X(q)
is then the sum of the stretched X1 sequence and the stretched X2 sequence delayed by
one sample. Since a delay of K samples in the start of the input sequence causes the
transform to be multiplied by exp(-27rink/2N), the transform C(m) is equal to

C(m) =-[A 1 (m) + A2 (m) exp (-27rim/2N)]. (B4)

For values of m greater than N-1, the values of C(m) are obtained by noting that A1 and
A2 are periodic, of period N:

C(N+m) = 2 [A (m) - A2(m) exp (-2irim/2N)] (B5)

m = 0, 1, ..., N-1 .

The transforms A 1 and A2 are found from A, the transform of the input sequence,
considered as N complex points, by means of the following relationships:

A(n) = A1 (n) + iA2 (n) (B6)
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A*(N-n) = A1 *(N-n) - iA2*(N-n)

=A 1 (n) -iA 2 (n) (B7)

Al (n) = [A(n) + A *(N-n)] (B8)

A 2 (n) [A(n) - A*(N-n) n = 0, 1, ..., N/2-1. (B9)

The procedure for finding the transform of the input sequence, considered as 2N
real values, is thus to use the FFT program to calculate A, then apply Eqs. (B8) and (B9)
and finally (B4) and (B5). In assigning storage locations, use is made of the fact that
A 1 (P), A 1 (N/2), A2 (0), A2 (N/2), C(0), and C(N) have imaginary components which are
identically zero, so they may be paired. All other transform components are, in general,
complex.



Appendix C

INVERSE TRANSFORM

The inverse transform of a set of Fourier coefficients B(n) which possess conjugate
symmetry, can be found by combining the coefficients as shown below, applying the direct
transform, and combining the results of the direct transform. The conjugate symmetry
is expressed as (*denotes the complex conjugate):

B(N-n) = B*(n) n = 0, 1, ... , N/2. (Cl)

The inverse transform is

N-1
g(k) = LB(n) exp(27rink/N) k = 0, 1, ..., N-1. (C2)

n=0

Making use of Eq. (Cl) results in

g(k) = B(0) + (_1)kB(f) + 2 E Re{B(n)exp(27rink/N)}. (C3)
n=

Combine the components to form the N real numbers,

f(k) = Re {B(k)} + Im {B(k)} (C4)

f(N-k) = Re {B(k)} -Im {B(k) }. (C5)

Or,

B(k) = f(k) + f(N-k) + i f(k - f(N-k) k = 0, 1 N12. (C6)
2 2

Substitute Eq. (C6) into (C3) to obtain

N-1
g(k) = f(k)cos(27rnk/N) - f(k)sin(2vrnk/N). (C7)

The terms in this summation may be obtained by a direct transform of the sequence
f(k). Denoting the result of this transform by A(n), the desired inverse transform is

g(n) = Re {A(n)} + Im {A(n)} n = 0, 1, ... , N/2 (C8)

g(N-n) = Re {A(n)} - Im {A(n)} (C9)

due to the symmetry properties of A(n).
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The procedure for finding the inverse transform of the original coefficients B(n) is
thus to combine the components of B(n) according to Eqs. (C4) and (C5), perform a
direct transform on the results to yield A(n), and then to combine the results according
to Eqs. (C8) and (C9).
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